The Fueter Theorem and Dirac symmetries

David Eelbode
Departement of Mathematics and Computer Science
University of Antwerp
(partially joint work with V. Souček and P. Van Lancker)
Define differential operators on \mathbb{R}^m (multivariate analysis)
Generate solutions of a special form (the Fueter theorem)
Proof by means of (Lie) symmetries of the operator
Explore the underlying algebraic framework
Find connections with special functions
Quaternionic analysis in \mathbb{H}: notations

- **Regularity** in quaternionic analysis $D_q f = 0$ with

 $$f : \mathbb{R}^4 \to \mathbb{H} : (t; x, y, z) \mapsto f(t; x, y, z),$$

 where $f = f_0 + i f_1 + j f_2 + k f_3$ (and $i^2 = j^2 = k^2 = -1$)

- **The Fueter-operator** on \mathbb{H}-valued functions:

 $$D_q := \partial_t + i \partial_x + j \partial_y + k \partial_z$$

- Quaternions can be written in ‘polar form’ as

 $$q := t + (ix + jy + kz) = t + \rho \omega \quad (\omega \in S^2 \subset \mathbb{R}^3)$$

 where $\rho^2 = x^2 + y^2 + z^2$ (Euclidean spatial squared norm)

Universiteit Antwerpen
Recent interest in quaternionic analysis

- Applications in theoretical physics (Frenkel - Libine)
 → Schrödinger model for minimal representations of $O(3, 3)$
 → Quaternionic analysis, representation theory and physics

- Functional calculus and spectral analysis
 (Alpay - Colombo - Sabadini - Struppa - ...)

- Quaternionic Fourier transforms
 (Bujack - De Bie - Hitzer - Sangwine - Scheuermann)

- Relation with the conformal algebra: $\mathbb{R}_{1,3} \cong M^{2 \times 2}(\mathbb{H})$
Fueter’s original result (1935)

- Construction of regular functions from holomorphic ones:
 \[\mathcal{F} : \ker \bar{\partial}_z \rightarrow \ker D_q \]

- **Input:** a holomorphic function on \(\Omega \subset \mathbb{C} \)
 \[f(z) = u(x, y) + iv(x, y) \in \ker(\partial_x + i\partial_y) \]

- **Output:** a \(q \)-regular function (solution for \(D_q \))
 \[F(t; x, y, z) = \mathcal{F}[f] := \Delta_4(u(t, \rho) + \omega v(t, \rho)) \]
 → the map \(\mathcal{F} \) combines **substitution + Laplace operator**

Universiteit Antwerpen
Clifford analysis in a nutshell

- Inspired by the (massless) **Dirac equation** on $\mathbb{R}^{1,3}$:
 \[i\hbar \gamma^\mu \partial_\mu \psi(t; x) = 0 \]
 \rightarrow matrices γ^μ generate the Clifford algebra $\mathbb{R}_{1,3}$

- **Clifford algebras** exist in greater generality:
 \[(p, q) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \rightarrow \mathbb{R}_{p,q} \rightarrow \mathbb{R}_{p,q} \otimes \mathbb{C} = \mathbb{C}_{p+q} := \mathbb{C}_m \]

- Natural question: study the corresponding **‘Dirac operator’**
 \[\mathbb{R}_{p,q} = \text{Alg}(e_1, \ldots, e_m) \rightarrow \partial_x := \sum_{j=1}^m e_j \partial_{x_j} \]
Defining relations for \mathbb{C}_m (similar for $\mathbb{R}_{p,q}$):

$$e_a e_b + e_b e_a = \{e_a, e_b\} = -2\delta_{ab}$$

→ m anti-commuting complex (or hyperbolic) units

Clifford analysis thus refines harmonic analysis:

$$\partial_x^2 = (e_1 \partial_{x_1} + \ldots + e_m \partial_{x_m})^2 = -\Delta_m$$

Study of functions with values in (subset of) \mathbb{C}_m

→ typical example: a real subalgebra such as $\mathbb{R}_{0,m}$

→ ‘best choice’ (algebraically speaking): a spinor space
Clifford analysis generalises complex analysis
→ algebra isomorphism $\mathbb{R}_{0,1} \cong \mathbb{C}$
→ Dirac operator on \mathbb{R}^2 factorises Δ_2
→ analogue of Cauchy formula available (for all m)

Clifford analysis generalises quaternionic analysis
→ algebra isomorphism $\mathbb{R}_{0,2} \cong \mathbb{H}$
→ Dirac operator on \mathbb{R}^4 factorises Δ_4

Obvious question 1: how to generalise Fueter’s theorem? (i.e. special Dirac solutions from holomorphic functions)

Obvious question 2: do they have a special meaning?
Answers can be found in...

► Work done by Sommen-Tao-Kou

\[\mathcal{F} : \ker \bar{\partial}_z \to \ker \partial_x \]

\[\to \text{first in } \textit{odd} \text{ dimensions } m \ (\textit{obvious’ generalisation}) \]

\[\to \text{later in } \textit{even} \text{ dimensions } m \ (\text{Fourier multipliers}) \]

\[\to \text{further generalisations (‘shifted versions’)} \]

► Essentially also \textbf{substitution} + \textbf{Laplace operator}

\[\mathcal{F}[f](x_1, \ldots, x_m) = \Delta_{m^2}^{m-1} [u(\rho, x_m) + \omega e_m v(\rho, x_m)] \]

with \[\sum_j x_j e_j = \rho \omega + x_m e_m \in \mathbb{R}^{m-1} \oplus \mathbb{R} \ (\text{branched splitting}) \]
Plan for the lecture

- Give an **alternative proof** using symmetries for ∂_x
- We are interested in an algebraic approach:
 → easier to see the *link with special functions*
 → allows a generalisation to *other invariant operators*
 → possible connection with *other quadratic algebras*
 → possible connection with *slice regularity*
Symmetries for a differential operator

Consider a differential operator

\[D : \mathcal{C}^\infty(\mathbb{R}^m, \mathcal{V}) \rightarrow \mathcal{C}^\infty(\mathbb{R}^m, \mathcal{V}) \]

One says: \(\delta_1 \in \text{End} \mathcal{C}^\infty(\mathbb{R}^m, \mathcal{V}) \) is a generalised symmetry if there also exists an operator \(\delta_2 \in \text{End} \mathcal{C}^\infty(\mathbb{R}^m, \mathcal{V}) \) such that

\[D\delta_1 = \delta_2 D \quad \Rightarrow \quad \delta_1 \in \text{End ker } D \]

Special case: \(\delta_1 = \delta_2 \Rightarrow \) a classical symmetry for \(D \)

First order (generalised) symmetries span a Lie algebra [Miller]
Generalised symmetries for the Dirac operator

- (obvious) translation symmetry operators: $[\partial_{x_j}, \partial_x] = 0$
- rotational symmetry operators: $[dL(e_{ij}), \partial_x] = 0$

$$dL(e_{ij})f(x) := \left(x_i \partial_{x_j} - x_j \partial_{x_i} - \frac{1}{2} e_{ij} \right) f(x),$$

where e_{ij} generates a rotation (‘anti-symmetric matrix’)

- generalised Euler symmetry ($E_x = r \partial_r = \sum_j x_j \partial_{x_j}$):

$$\partial_x (2E_x + m - 1) = (2E_x + m + 1) \partial_x$$

So far: symmetries belonging to $(so(m) \oplus \mathbb{R}) \oplus \mathbb{R}^m$

(you may recognise a parabolic Lie algebra/Euclidean motions)

Universiteit Antwerpen
The (monogenic) Klein inversion operator is defined by means of
\[
\mathcal{I} : \ker \partial_x \rightarrow \ker \partial_x : f(x) \mapsto \mathcal{I}[f](x) := \frac{x}{|x|^m} f \left(\frac{x}{|x|^2} \right)
\]

→ easily verified that the following operator equality holds:
\[
\mathcal{I} \partial_x \mathcal{I} = |x|^2 \partial_x \Rightarrow \partial_x \mathcal{I} = -\mathcal{I} |x|^2 \partial_x = (\mathcal{I} |x|^2 \mathcal{I}) \mathcal{I} \partial_x
\]

→ gives rise to another class of generalised symmetries:
\[
\partial_x (\mathcal{I} \partial_{x_j} \mathcal{I}) = \frac{1}{|x|^2} (\mathcal{I} \partial_{x_j} \mathcal{I}) |x|^2 \partial_x \quad (1 \leq j \leq m)
\]
The full conformal picture

- We have found the following Lie algebra of symmetries:

\[
\text{Alg}(\mathcal{I} \partial x_j \mathcal{I}) \oplus \left(\text{Alg}(dL(e_{ij})) \oplus \mathbb{R}(2E_x + m - 1) \right) \oplus \text{Alg}(\partial x_j)
\]

- Defines a realisation for the algebra \(so(1, m + 1) \)

 e.g. \[[\partial x_j, \mathcal{I} \partial x_k \mathcal{I}] = \delta_{jk}(2E_x + m - 1) - dL(e_{jk}) \]

 \(\rightarrow \) explains where the conformal weight \(m - 1 \) comes from

 \(\rightarrow \) in abstract form: \(\mathbb{R}^m \oplus (so(m) \oplus \mathbb{R}) \oplus \mathbb{R}^m \) (1-graded)
Intermezzo: the Lie algebra $\mathfrak{sl}(2)$

- Classical matrix definition:

 $$ \mathfrak{sl}(2) := \{ M \in \mathbb{C}^{2 \times 2} : \text{trace}(M) = 0 \} $$

- Well-known vector space basis \{X, Y, H\} given by

 \[
 \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}
 \]

- Defines a Lie algebra for $[A, B] := AB - BA$ with

 $[X, Y] = H$ \quad $[H, X] = +2X$ \quad $[H, Y] = -2Y$
Verma modules

- Take a highest weight vector v_h in $\ker X$
- Repeated action of $Y \in \mathfrak{sl}(2)$ creates a vector space

\[
\mathbb{V}_\lambda^\infty := \bigoplus_{j=0}^{\infty} Y^j[v_h]
\]

(provided we have that $Y^j[v_h] \neq 0$ for all $j \in \mathbb{Z}^+$)
- Each of these vectors is an eigenvector for $H \in \mathfrak{sl}(2)$

\[
H[Y^j[v_h]] = (\lambda - 2j)Y^j[v_h]
\]

- **Result:** a Verma module $\mathbb{V}_\lambda^\infty$ with $\lambda \in \mathbb{C}$ (with restrictions)

Universiteit Antwerpen
Specific subalgebra plays a crucial role

Lemma

The Lie algebra $\mathfrak{sl}(2)$ can be realised as

$$\mathfrak{sl}(2) = \text{Alg}(\partial_{x_j}, -I\partial_{x_j} I, 1 - m - 2E_x) = \text{Alg}(X, Y, H)$$

Arbitrary polynomial in (x_1, \ldots, x_{m-1}) generates a Verma module:

$$\mathcal{V}_{1-m-2k}^\infty := \bigoplus_{j=0}^{\infty} (-1)^j (I\partial_{x_m}I)^j P_k(x_1, \ldots, x_{m-1})$$

→ ‘weight spaces’ expressed in terms of Gegenbauer polynomials
→ these Verma modules will serve as images of the Fueter map

Universiteit Antwerpen
The (poly-monogenic) inversion operator is defined by means of

\[\mathcal{I}_\alpha : f(x) \mapsto \mathcal{I}_\alpha[f](x) := \frac{x}{|x|^{m+\alpha}} f \left(\frac{x}{|x|^2} \right) \quad (\alpha \in \mathbb{C}) \]

→ typical case of interest: \(\alpha = -2\ell \) with \(\ell \in \mathbb{Z}^+ \)
→ mapping properties differ from Klein inversion (\(\alpha = 0 \))

\[\mathcal{I}_{-2\ell} : \ker \partial_x^{2\ell+1} \rightarrow \ker \partial_x^{2\ell+1} \]

indeed: \(f(x) \mapsto |x|^{2\ell} \mathcal{I}[f](x) \) (extra factor \(|x|^{2\ell} \) to be killed)

Universiteit Antwerpen
Still a copy of $\mathfrak{sl}(2)$ available

Lemma

The Lie algebra $\mathfrak{sl}(2)$ can be realised as

$$\mathfrak{sl}(2) = \text{Alg}(\partial_{x_j}, -\mathcal{I}_\alpha \partial_{x_j} \mathcal{I}_\alpha, 1 - m - \alpha - 2E_x)$$

Explicit formula for the ‘creation operator’:

$$\mathcal{I}_\alpha \partial_{x_m} \mathcal{I}_\alpha = -|x|^2 \partial_{x_m} + x_m (2E_x + \alpha + m - 1) + x \wedge e_m$$

In order to get a Fueter theorem we need two ingredients:

→ a substitution map $z = x + iy \mapsto \ ?$

→ the action of a Laplace power

Universiteit Antwerpen
The substitution map

Earlier results based on the following:

\[u + iv \mapsto u + (\omega e_m)v = \text{scalar} + (\omega e_m)\text{scalar} \]

We know that in the Clifford algebra one has that

\[(\text{vector}) \times (\text{vector}) = \text{scalar} + \text{bivector} \]

This suggests the following:

\[z = x + iy \mapsto (\bar{e}_m x) = -e_m \sum_{j=1}^{m} e_j x_j = x_m + \sum_{j=1}^{m-1} e_j e_m x_j \]
Invoking the conformal symmetries

The following can now easily be proved:

\[(- |x|^2 \partial_{x_m} + x_m (2 \bar{\mathcal{E}}_x + 1) + x \wedge e_m)(\bar{e}_m x)^k = (k + 1)(\bar{e}_m x)^{k+1} \]

This leads to (choose the appropriate \(\alpha \in \mathbb{C} \)):

\[(\mathcal{I}_{2-m} \partial_{x_m} \mathcal{I}_{2-m})^k[1] = k!(\bar{e}_m x)^k \]

\(\rightarrow \) we have that \(\mathcal{I}_{2-m} = \mathcal{I}_{-2\ell} \iff \ell = \frac{m-2}{2} \) (for \(m \) even)

\(\rightarrow \) the operator \(\mathcal{I}_{3-m} \) then preserves solutions for \(\partial_x^{1+2\ell} = \partial_x^{m-1} \)

\(\rightarrow \) so does the creation operator \(\mathcal{I}_{2-m} \partial_{x_m} \mathcal{I}_{2-m} \)

Universiteit Antwerpen
Fueter’s theorem

We have now shown (for odd dimensions m):

$$\partial_x^{m-1}(\overline{e}_m x)^k = (-1)^{\frac{m}{2}-1} \partial_x \left(\Delta_x^{\frac{m}{2}-1}(\overline{e}_m x)^k \right) = 0$$

As this holds for all k, the result for holomorphic $f(z)$ follows:

$$f(z) \in \ker \overline{\partial}_z \mapsto \Delta_m f(\overline{e}_m x) \in \ker \partial_x$$

Explicit expressions for Fueter images available:

$$\mathcal{F}[z^{k+m-1}] \sim (\mathcal{I}_0 \partial_{x_m} \mathcal{I}_0)^k[1] \sim \pi_m \left(|x|^k C_k^{\frac{m}{2}-1}(t) \right)$$

with $t = \cos \theta = \frac{x_m}{|x|} \in [-1, +1]$ fixed by the choice of e_m

Universiteit Antwerpen
The monogenic projection operator π_m

- Complex case: $\Delta_2 = 4\partial_z\bar{\partial}_z$, so

$$\Delta_2 f(z) = 0 \implies f(z) = f_0(z) + \bar{z}f_1(z) \xrightarrow{\pi_2} f_0(z)$$

with $\bar{\partial}_z f_0(z) = \bar{\partial}_z f_1(z) = 0$

- We know that $\partial_x^2 = -\Delta_m$, so

$$\Delta_x f(x) = 0 \implies f(x) = f_0(x) + xf_1(x) \xrightarrow{\pi_m} f_0(x)$$

with $\partial_x f_0(x) = \partial_x f_1(x) = 0$
The role of the Gegenbauer polynomials

- In a sense, Fueter’s theorem does the following:
 \[\sum_{k \in \mathbb{Z}} c_k z^k \mapsto \sum_{k=0}^{\infty} \pi_m \left(C_{k,m} |x|^k + \frac{D_{k,m}}{|x|^{k+m-2}} \right) C_k^{m-1}(t) \]

- Gegenbauers arise as a consequence of branching rules (both for harmonics and monogenics on \(\mathbb{R}^m \))
 \[\mathcal{P}_k(\mathbb{R}^m, \mathbb{C}_m) \cap \ker \partial_x \cong \bigoplus_{j=0}^{k} \mathcal{P}_j(\mathbb{R}^{m-1}, \mathbb{C}_m) \cap \ker \partial_x \]

- Special role for \(j = 0 \): these are the Gegegenbauers

Universiteit Antwerpen
Different interpretation for Fueter’s theorem

- Complex powers z^k are mapped to special components for the restriction of homogeneous solutions for ∂_x on \mathbb{R}^m to \mathbb{R}^{m-1}
- The result is a slice monogenic function (Colombo et al.)
- **Obvious question:** can one restrict from \mathbb{R}^m to \mathbb{R}^{m-p} ($p > 1$)
 → leads to bi-axial Fueter theorems (Jacobi polynomials)
 → may lead to refinements of the slice theorems
Thank you for your attention!